Wellsville Water Treatment Plant

www.wellsvillewater.com WATER QUALITY REPORT FOR 2004

INSIDE THIS REPORT:				
Facts & Figures	<u>2</u>			
Are their contaminants?	<u>2</u>			
Why save water?	<u>2</u>			
Detected Contaminants	<u>3</u>			
Definitions	<u>3</u>			
Non-Detected Contaminants	<u>4</u>			
Special Precautions?	<u>4</u>			
System Improvements	<u>5</u>			

Municipal Building

Public Water Supply ID# NY 0200327

To comply with State and Federal regulations, the Wellsville Water Department will be annually issuing a report describing the quality of your drinking water. The purpose of this report is to raise your understanding of drinking water and awareness of the need to protect our drinking water sources. Last year, your tap water met all State drinking water health standards. We are proud to report that our system has never violated a maximum contaminant level or any other water quality statement. This report provides an overview of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to State standards.

If you have any questions about this report or concerning your drinking water, please contact Dana Harris, treatment plant supervisor, at (585) 593-3333. We want you to be informed about your drinking water. If you want to learn more, please visit our

web site (www.wellsvillewater.com), or attend any of our regularly scheduled Village board meetings. The meetings are held the 2nd and 4th Mondays of the month at 7:00 p.m. at the municipal building.

WHERE DOES OUR WATER COME FROM?

In general, the sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from the presence of animals or from human activities. Contaminants that may be present in source water include: microbial contaminants; inorganic contaminants; pesticides and herbicides; organic chemical contaminants; and radioactive contaminants. In order to ensure that tap water is safe to drink; the State and the EPA prescribe regulations which limit the amount of certain contaminants in water provided by public water systems. The State Health Department's and FDA's regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

The Village of Wellsville's water source is surface water (Genesee River). The water is drawn from the river at our intake located south of the treatment plant. During 2004 our system did not experience any restriction of our water source. The water is pumped

from our intake to the treatment plant. After filtration, disinfection, pH adjustment, fluoridation, and corrosion control treatment, the water is then pumped to our two new 2 million gallon reservoirs which then flows to the businesses and homes.

FACTS AND FIGURES

Our water system serves 5700 people through 2400 service connections. The total water produced in 2004 was 249 million gallons. The daily average water pumped into the system was 682,261 gallons. Our highest single day was 1,666,500. The amount of water delivered to customers was 188 million gallons; this leaves 61 million gallons of water unaccounted for. (25% of the amount pumped). This unaccounted for water includes water used for flushing mains, fighting fires, fire training, and leaks. We also supplied the Town of Scio with water in 2004. In 2004 our water customers were charged \$0.54 per unit of water (1 unit equals 748 gallons) for 1 to 3 units, \$3.68 per unit of water for 4 to 50 units, \$2.54 per unit for 50 to 100 units, \$2.27 per unit for 101 to 150 units, \$1.32 per unit over 150 units. Plus a monthly service charge of \$14.00.

Please visit our web site wellsvillewater.com/water_rates.htm for a more detailed explanation of the billing charges.

Are there contaminants in our drinking water?

As the State regulations require, we routinely test your drinking water for numerous contaminants. These contaminants include: total coliform, turbidity, inorganic compounds, nitrate, nitrite, lead, copper, volatile organic compounds, total trihalomethanes, radiological, and synthetic organic compounds. The table of detected contaminants included with this report depicts which compounds were detected in your drinking water. For further information on all of the contaminants tested and their results see the list on pages 3 & 4 or visit our web site. The State allows us to test for some contaminants less than once per year because the concentrations of these contaminants do not change

frequently. Some of our data though representative, are more than one year old.

It should be noted that all drinking water, including bottled drinking water, might be reasonably expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (800) 426-4791 or the Allegany County Department of Health at (585) 268-9250. For all of our current lab results, visit our web site

1 unit equals

748 gallons of

water

wellsvillewater.com/

water rates.htm

<u>wellsvillewater.com/</u> <u>lab_results.htm</u>

Why save water and how to avoid wasting it?

.

Although our system has an adequate amount of water to meet present and future demands, • there are a number of reasons why it is imporwater. tant to conserve water: Saving water saves en-• ergy and some of the costs associated with both of these necessities of life. Saving water reduces the cost of energy required to pump water. • Saving water lessens the strain on water systems during a dry spell or drought, helping to avoid severe water use restrictions so that essential fire fighting needs are met.

.

You can play a role in conserving water by becoming conscious of the amount of water your household is using, and by looking for ways to use less whenever you can. It is not hard to conserve

Conservation tips include:

• Turn off the tap when brushing your teeth.

• Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20

gallons a day. Fix it and you can save almost 6,000 gallons per year.

• Check your toilets for leaks by putting a few drops of food coloring in the tank, watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from one of the otherwise invisible toilet leaks. Fix it and you can save more than 30,000 gallons per year.

• Use Low flow showerheads and faucets.

• Water your lawn sparingly early morning or late evening.

Do only full loads of wash and dishes.

• Use your water meter to detect hidden leaks. Simply turn off all taps and water using appliances. Check your meter reading, and then check again after 15 min-

utes, if it moved, you have a leak. Most of our meters have a leak detector dial in the middle of them (usually a white arrow), that if turning when everything is off signifies a leak.

• Don't cut your lawn too short, longer grass saves water.

TABLE OF DETECTED CONTAMINANTS

CONTAMINANT	VIOLATION YES/NO	DATE OF SAMPLE	LEVEL DETECTED (RANGE)	LEVEL OF MEASUREMENT	MCLG	REGULATORY LIMIT	LIKELY SOURCE OF CONTAMINATION
Microbiological Cont	aminants:						
Turbidity ¹	NO	05/09 2004	0.33 (0.03- 0.33)	NTU	N/A	TT Q.5	Soil Runoff
Radiological Contam	inants: No	Contamina	nts detected -	06/04/2000 (every four	vears)	
Inorganic Contamina	nts						
Baium	NO	01/14/ 2004	0.042	mg/l	2	MCL 2	Discharge of drilling wastes; metal refineries; natural deposits.
Chloride	NO	02/06 2003	26.7 (3.1- 26.7)	mg/l	N/A	MCL 250	Naturally occur- ring or road salt contamination.
Copper ²	NO	7/12 2004	0.14 (0.023	mg/l	1.3	AL 1.3	Corrosion of galvanized pipes; natural deposits.
Fluoride	NO	05/19 2004	1.89 (0.71 - 1.89)	mg/l	N/A	MCL 2.2	Natural deposits; water additive that promotes strong teeth.
Lead ³	NO	7/12 2004	7.9 (ND -13)	ug⁄l	0	AL 15	Corrosion of household plumb- ing systems; natural deposits.
Nitrate	NO	09/18 2003	3.30	mg/l	10	MCL 10	Runoff from fertilizer use; natural deposits.
Synthetic Organic Chemicals (Pesticides / Herbicides) No Contaminants detected – 04/14/2004							
Volatile Organic Contaminants - No Contaminants Detected - 01/14/2004							
Disinfection Byprodu	icts						
HAA5 ⁴	NO	11/10 2004	34	ug/l	N/A	MCL 60	By product of drinking water chlorination.
Total Trihalomethanes ⁵	NO	11/10 2004	32.8	ug/l	N/A	MCL 80	By product of drinking water chlorination.
Total Organic Compounds: Disinfection byproduct precursor							
Entry Point	NO	12/08 2004	1.3	mg/l	N/A	TT 35% removal	Disinfection byproduct pre- cursor
Source	NO	12/08 2004	2.5	mg/l	N/A	N/A	Disinfection byproduct pre-

What does this information mean?

As you can see from the table of detected contaminants, our system had no violations. We have learned through our testing that some contaminants have been detected: however, these contaminants were detected below the level allowed by the State.

1 - Turbidity is a measure of the cloudiness of the water. We test it because it is a good indicator of the effectiveness of our filtration system. Our highest single turbidity measurement for the year occurred on 05/09/2004. State regulations require that turbidity must always be below 0.5 NTU. 100% of our samples met this turbidity performance standard.

2 - The level presented represents the 90th percentile of the 20 sites tested. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it. The 90th percentile is equal to or greater than 90% of the copper values detected at your water system. In this case 20 samples were collected at your water system and the 90th percentile value was the 18th highest value (0.19 mg/l). The action level for copper was not exceeded at any of the sites tested.

3 - The level presented represents the 90th percentile of the 20 sites tested. The action level for lead was exceeded at one of the sites tested.

4-HAA5's (mono-,di, & trichloroacetic acid, and mono-, & dibromoacetic acid)

5 - Total Trihalomethanes (TTHM's - chloroform, bromodichloromethane, dibromochloromethane, and bromoform)

Definitions:

<u>Maximum Contaminant Level (MCL)</u>: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible.

Maximum Contaminant Level Goal

(MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

<u>Action Level (AL)</u>: The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements that a water system must follow.

<u>Treatment Technique (TT):</u> A required process intended to reduce the level of a contaminant in drinking water.

<u>Non-Detects (ND):</u> Laboratory analysis indicates that the constituent is not present.

<u>Nephelometric Turbidity Unit (NTU):</u> A measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

<u>Milligrams per liter (mg/l)</u>: Corresponds to one part of liquid in one million parts of liquid (parts per million - ppm).

<u>Micrograms per liter (ug/l)</u>: Corresponds to one part of liquid in one billion parts of liquid (parts per billion - ppb).

NON-DETECTED CONTAMINANTS

The following contaminants were \mathbf{NOT} detected in Wellsville's water in 2004

IF TESTED MORE THAN ONCE, THE LATEST TEST RESULTS ARE USED.

~~~~~~~~~~~	N 94 94 94 94 94 94 94 94 94 94 94 94 94		**********
Bromoform	Endrin	Chlorobenzene	1,1,1,2-Tetrachloroethane
Dibromoacetic acid	Heptachlor	Chloroethane	1,1,2,2-Tetrachloroethane
Monobromoacetic acid	Heptachlor epoxide	Chloromethane	Tetrachloroethene
Monochloroacetic acid	Hexachlorobenzene	2-Chlorotoluene	Toluene
Gross Alpha	Hexachlorocyclopentadiene	4-Chlorotoluene	1,2,3-Trichlorobenzene
1,2-Dibromoethane (EDB)	HCH-gamma (Lindane)	Dibromomethane	1,2,4-Trichlorobenzene
1,2-Dibromo -3-chloropropane	Methoxychlor	1,2-Dichlorobenzene	1,1,1-Trichloroethane
Chlordane	Metolachlor	1,3-Dichlorobenzene	1,1,2-Trichloroethane
Toxaphene	Metribuzin	1,4-Dichlorobenzene	Trichloroethene
PCB-1016	Propachlor	Dichlorodifluoromethane	Trichlorofluoromethane
PCB-1221	Simazine	1,1-Dichloroethane	1,2,3-Trichloropropane
PCB-1323	Dieldrin	1,2-Dichloroethane	1,2,4-Trimethylbenzene
PCB-1242	Aldicarb ulfoxide	1,1-Dichloroethene	1,3,5-Trimethylbenzene
PCB-1248	Aldicarb sulfone	cis-1,2-Dichloroethene	Vinyl chloride
PCB-1254	Oxamyl	trans-1,2-Dichloroethene	m,p-Xylene
PCB-1260	Methomyl	1,2-Dichloropropane	o-Xylene
2,4-D	3-Hydroxycarbofuran	1,3-Dichloropropane	Methyl tert-butyl ether
Dalapon	Aldicarb	2,2-Dichloropropane	Arsenic
Dinoseb	Carbofuran	1,1-Dichloropropene	Mercury
Pentachlorophenol	Carbaryl	cis-1,3-Dichloropropene	Antimony
Picloram	Benzene	trans-1,3-Dichloropropene	Selenium
2,4,5-TP (Silvex)	Bromobenzene	Ethylbenzene	Thallium
Aldrin	Bromochloromethane	Hexachlorobutadiene	Beryllium
Atrazine	Bromomethane	Isopropylbenzene	Cadmium
Benzo (a) pyrene	n-Butylbenzene	p-Isopropyltoluene	Chromium
Di(2-ethylhexyl)adipate	sec-Butylbenzene	Methylene chloride	Nickel
Di-(2-ethylhexyl)phthalate	tert-Butylbenzene	n-Propylbenzene	
Butachlor	Carbon Tetrachloride	Styrene	

For a complete laboratory results listing

visit our web site

wellsvillewater.com/lab_results.htm



## Do I need to take special precautions?

Although our drinking water met or exceeded State and Federal regulations, some people may be more vulnerable to disease causing microorganisms or pathogens in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV\AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care provider about their drinking water. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium, Giardia and other microbial pathogens are available from the Safe Drinking Water Hotline (800) 426-4791. Our goal is to provide you with a reliable, safe and adequate supply of water. We take this responsibility very seriously. We will always adhere to all Local, State and Federal requirements.

#### Wellsville Water Treatment Plant

111 W. State St. Wellsville, NY 14895

Tel: 585-593-3333 Fax: 585-593-5864 dana@wellsvillewater.com



# We're on the WEB www.wellsvillewater.com







#### 

#### 2004:

- New York Rural Water Association initiated a complete source water assessment program for our entire watershed, which involves two states. This program will be continuous to help protect our watershed to maintain a safe supply for our customers. This program took 11 months to complete and involved the cooperation of many agencies across both states.
- All of our certified operators attended courses to remain up to date on all new rules, regulations and State requirements.
- Continuously updating our web site to keep our consumers up to date.
- Submitted all required lab tests and the results are posted on our website. This includes the new disinfection byproduct monitoring rule requirements.
- Exercised main water line valves.
- Conducted leak survey with NY Leak Detection Service, all leaks have been repaired.
- Conducted watershed survey and submitted to Department of Health.
- Updated emergency plan and submitted to Department of Health.
- Installed new water main on Pine St., School St., E. Pearl St.
- Repaired numerous fire hydrants.
- Conducted lead and copper tests with the cooperation of 20 of our customers.

#### 2005:

- Install security fencing and lighting around our finished water reservoirs.
- Continue working on the source water protection program.
- Continue to remain up to date on all new rules & regulations.
- Install a pump station at the reservoir sites to supply residents of Sunset Ave. and Lee Place with a minimum of 50# pressure.
- Replace 4 fire hydrants in sections of N. Main and Central Place and Grover St.
- Flow test all of the fire hydrants in the system and enter this information into a database,
- Flush system twice, once in May the other in September.
- Replace 4 valves in the system.
- Replace outdated telemetry system in the treatment plant with a more reliable radio controlled telemetry system.

Thank you for allowing us to continue to provide your family with quality drinking water this year. We ask that all our customers help us to protect our water sources, which are the heart of our community and our way of life. Please call the water treatment plant at (585) 593-3333 or e-mail me at <u>dana@wellsvillewater.com</u> if you have any questions. Please visit our web site periodically as it is updated as new information becomes available. <u>www.wellsvillewater.com</u>

Dana L. Harris Water Treatment Plant Supervisor